
Implementation and Performance of Portals 3.3 on the Cray XT3

Ron Brightwell Trammell Hudson∗ Kevin Pedretti Rolf Riesen Keith D. Underwood
Sandia National Laboratories†

PO Box 5800
Albuquerque, NM 87185-1110

Abstract

The Portals data movement interface was developed at
Sandia National Laboratories in collaboration with the
University of New Mexico over the last ten years. Portals
is intended to provide the functionality necessary to scale
a distributed memory parallel computing system to thou-
sands of nodes. Previous versions of Portals ran on several
large-scale machines, including a 1024-node nCUBE-2, a
1800-node Intel Paragon, and the 4500-node Intel ASCI
Red machine. The latest version of Portals was initially
developed for an 1800-node Linux/Myrinet cluster and has
since been adopted by Cray as the lowest-level network pro-
gramming interface for their XT3 platform. In this paper,
we describe the implementation of Portals 3.3 on the Cray
XT3 and present some initial performance results from sev-
eral micro-benchmark tests. Despite some limitations, the
current implementation of Portals is able to achieve a zero-
length one-way latency of under six microseconds and a
uni-directional bandwidth of more than 1.1 GB/s.

1. Introduction

Portals 3.3 [6] is an evolution of the user-level net-
work programming interface developed in early genera-
tions of the lightweight kernel operating systems [11, 13]
created by Sandia National Laboratories and the Univer-
sity of New Mexico for large-scale massively parallel dis-
tributed memory parallel computers. Early versions of Por-
tals did not have functional programming interfaces, which
severely hampered an implementation for intelligent or pro-
grammable networking hardware. In 1999, Sandia and
UNM developed a functional programming interface for
Portals that retained much of the desired functionality but

∗Under contract to Sandia via OS Research, Inc.
†Sandia is a multiprogram laboratory operated by Sandia Corporation,

a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

removed the dependence on a lightweight kernel environ-
ment. This third generation implementation of Portals was
specifically intended to support an 1800-node Linux cluster
using the Myrinet [2] network fabric. In addition to sup-
porting the Cplant [4] clusters, Portals was also adopted by
Cluster File Systems, Inc. as the transport layer for their
Lustre file system [7].

In 2002, Cray chose to use Portals 3.3 as the lowest-
level programming interface for their custom designed
SeaStar [1] network interface on the XT3 system. The
SeaStar interconnect was designed specifically to support
a large-scale distributed memory scientific computing plat-
form. The network performance and scalability require-
ments for XT3 were ambitious when they were first pro-
posed for the initial installation at Sandia, called Red Storm.
The SeaStar network is required to deliver 1.5 GB/s of net-
work bandwidth per direction into each compute node and
2.0 GB/s of link bandwidth per direction. This yields an
aggregate of 3.0 GB/s into each node. The one-way MPI
latency requirement between nearest neighbors is 2 µs and
is 5 µs between the two furthest nodes.

In this paper, we describe the implementation of Por-
tals 3.3 for the SeaStar network interface on the XT3 and
provide an initial performance evaluation using low-level
micro-benchmark tests. Despite the fact that the software
environment is currently under active development, the ini-
tial performance results are promising. Current bandwidth
performance is higher than what can be achieved using a
single interface of any current commodity interconnect.

The rest of this paper is organized as follows. The next
section provides an overview of the SeaStar network hard-
ware. Section 3 discusses the software environment and the
implementation of Portals. In Section 4 we describe the
firmware on the SeaStar that implements Portals. A descrip-
tion of the test environment is presented in Section 5, while
performance results are shown in Section 6. Relevant con-
clusions of this paper are presented in Section 7.

Rx DMA
EngineFIFO

Tx DMA
EngineFIFO

R
ou

te
r

X+
X−

Y+
Y−

Z+
Z−

H
yp

er
T

ra
ns

po
rt

 C
av

e

HT to
Host

Processor Local
SRAM

Headers

Figure 1. Basic SeaStar block diagram

2. Hardware

The Cray SeaStar ASIC [1] in the XT3 system was de-
signed and manufactured by Cray, Inc. In a single chip, it
provides all of the system’s networking functions as well
as all of the support functions necessary to provide reliabil-
ity, availability, and serviceability (RAS) and boot services.
The basic block diagram is shown in Figure 1. Indepen-
dent send and receive DMA engines interact with a router
that supports a 3D torus interconnect and a HyperTransport
cave that provides the interface to the Opteron processor.
An embedded PowerPC processor is also provided for pro-
tocol offload and programming the DMA engines.

The DMA engines provide support for transferring data
between the network and memory while providing support
for the message packetization needed by the network. They
also provide hardware support for an end-to-end 32 bit CRC
check. This augments the extremely high reliability pro-
vided by a 16 bit CRC check (with retries) that is performed
on each of the individual links.

The physical links in the 3D topology support up to 2.5
GB/s of data payload in each direction. This accounts for
overhead in both the 64 byte packets used by the router and
the reliability protocol on the individual links. The interface
to the Opteron uses 800 MHz HyperTransport, which can
provide a theoretical peak of 3.2 GB/s per direction with a
peak payload rate of 2.8 GB/s after protocol overheads (and
a practical rate somewhat lower than that). The table-based
routers provide a fixed path between all nodes, resulting in
in-order delivery of packets.

The PowerPC processor is designed to offload protocol
processing from the host processor. It is a dual-issue 500
MHz PowerPC 440 processor with independent 32 KB in-
struction and data caches. It must program the DMA en-
gines since transactions across the HyperTransport bus re-

quire too much time to allow the host processor to program
these engines. On the receive side, the PowerPC is also
responsible for recognizing the start of new messages and
reading the new headers. Finally, the PowerPC must recog-
nize DMA completion events. To hold local state and han-
dle interactions with the host, the PowerPC has 384 KB of
scratch memory. This memory is protected by ECC com-
plete with scrubbing (to clear memory for switching from
classified to unclassified use). In this context, a certain por-
tion of the network management must be offloaded to the
network interface, but there is an opportunity to offload the
majority of network protocol processing as well.

3. Portals

The Portals [5] network programming interface was de-
veloped jointly by Sandia National Laboratories and the
University of New Mexico. Portals began as an inte-
gral component of the SUNMOS [11] and Puma [13]
lightweight compute node operating systems. In 1999, an
operational programming interface was created for Portals
so that it could be implemented for intelligent and/or pro-
grammable network interfaces outside the lightweight ker-
nel environment [6]. Portals is based on the concept of ele-
mentary building blocks that can be combined to support a
wide variety of upper-level network transport semantics.

Portals provides one-sided data movement operations,
but unlike other one-sided programming interfaces, the tar-
get of a remote operation is not a virtual address. Instead,
the ultimate destination of a message is determined at the
receiving process by comparing contents of the incoming
message header with the contents of Portals structures at
the destination.

3.1. Reference Implementation

An initial reference implementation of Portals 3.3 was
done by Sandia in 1999. This reference implementation was
designed to be easily portable between different network
and kernel architectures, with a mix of user-space, kernel-
space, and network interface-space implementations as pos-
sible targets. As of this writing, there exist implementations
of nearly all possible permutations of address spaces. It was
not, however, designed to allow these address spaces to be
mixed at runtime – the target was always a small number of
applications per node all in the same address space.

The implementation of Portals for the SeaStar is based
on this reference implementation developed by Sandia. The
XT3 system presented a novel requirement in that it needed
to support several different systems with the same code base
to enable both user-level applications and kernel-level ser-
vices for the two operating systems used on XT3 – the Cata-
mount lightweight compute-node kernel [10] and Linux:

• Catamount compute nodes with “generic” applications
and “generic” services

• Catamount compute nodes with “accelerated” applica-
tions and “generic” services

• Linux service nodes with many “generic” services and
kernel-level Lustre service

• Linux compute nodes with single user-level applica-
tion

The firmware on the SeaStar for each of these is exactly
the same, so it must be generic enough to support mov-
ing data into both user-level data buffers, kernel buffers and
delivering notifications to user-level event queues and to a
single kernel-managed event queue. The design and imple-
mentation of the firmware is discussed in detail in [12]. We
provide a summary in Section 4.

The reference implementation has a network abstrac-
tion layer (NAL) that allows all implementations to share
the same Portals library code, with the NAL providing the
user API to library to network communications paths. In
practice, each of these NALs share a large amount of code
for moving data between address spaces. For instance, all
Linux NALs that run user-level applications with the Por-
tals library in kernel-space will need to use the same address
validation routines and routines to copy data between user-
and kernel-space.

3.2. Cray Bridge

Since each of the different cases for the XT3 differs only
in the communication path between the user-level API and
the Portals library code, they can share all of the library to
network interface methods of the NAL. Unfortunately, the
existing reference implementation was not designed with
this sort of sharing in mind. To abstract the separate com-
munication paths, Cray designed a “bridge” layer that sits
atop the NAL and overrides the methods for moving data
to and from API and library-space, as well as the address
validation and translation routines.

Three bridges have been implemented:

• qkbridge for Catamount compute node applications

• ukbridge for Linux user-level applications

• kbridge for Linux kernel-level applications

Every NAL for Catamount, for instance, would share the
same qkbridge code. Since the bulk of the API to library
NAL is in the shared routines, this design allows very rapid
development of new library to network NALs.

The ukbridge and kbridge are able to run simultaneously
on a single node. Since both bridges use the same library to

network interface communication paths, both kernel-level
applications and user-level applications are able to cleanly
share the network interface.

The latest Portals reference implementation now sup-
ports a similar interface abstraction based on the success
of the bridge approach. It is hoped that this will allow more
rapid development of new NALs. Thanks to the removal of
much of the complexity in writing a new NAL, we hope that
this ease of development will allow Portals to become more
widely used on different platforms.

3.3. SeaStar NAL

There are two primary constraints to consider in an im-
plementation of Portals for the SeaStar. The first is the lim-
ited amount of memory available in the SeaStar chip. Lim-
iting the design to only the 384 KB of SRAM that could
be provided internally on the SeaStar helps to improve re-
liability and reduce cost. Unfortunately, it also makes the
offload of the entire Portals functionality somewhat chal-
lenging. The second constraint is the lack of any facilities
to manage the memory maps for the small pages used by
Linux.

In light of these constraints, the initial design of Portals
for the SeaStar places relatively little functionality on the
network interface. The network interface is primarily re-
sponsible for driving the DMA engines and copying new
message headers to the host. When these new headers have
been copied to the host, the host is interrupted to perform
the Portals processing. In response, the host pushes down
commands for depositing the new message. Similarly, on
the transmit side, the host pushes commands to the network
interface to initiate transfers. In both cases, the PowerPC is
responsible for interpreting the commands and driving the
DMA engines. When a message completes, the PowerPC
must again interrupt the host to allow it to post the appropri-
ate Portals event. All of this is handled by a tight loop that
checks for work on the network interface and then check for
work from the host.

The commands from the host to the network interface
take different forms depending on the operating system.
Under Linux, the host is responsible for pinning physical
pages, finding appropriate virtual to physical mappings for
each page, and pushing all of these mappings to the network
interface. In contrast, Catamount maps virtually contiguous
pages to physically contiguous pages. This means that a
single command is sufficient to allow the network interface
to feed all necessary commands to the DMA engine.

The SeaStar NAL, or SSNAL, implements all of the
entry-points required by a Portals NAL, including func-
tions for sending and receiving messages. Addition-
ally, SSNAL provides an interrupt handler for process-
ing asynchronous events from the SeaStar. In this way,

the platform-independent Portals library code can access
the SSNAL through the common NAL interface and the
SeaStar firmware can access platform-independent Portals
functions (e.g., Portals matching semantics) through the in-
terrupt handler. Our measurements indicate that a NULL-
trap into the Catamount kernel requires approximately 75 ns
of overhead—not a significant source of overhead. Inter-
rupts, on the other hand, are very costly, requiring at least
2 µs of overhead each. Clearly, it will be necessary to elim-
inate all interrupts from the data path in order to meet the
performance requirements of the XT3.

In the future, a new implementation of Portals will be
created to supplement the existing implementation. Much
of the Portals library functionality, including matching, will
be offloaded to the SeaStar firmware. This will allow ar-
riving messages to be immediately processed, rather than
waiting for the host to determine what actions to take. This
implementation, referred to as accelerated mode, will en-
able user-level Portals clients to post commands directly to
the firmware, without performing any system calls. Asyn-
chronous events, such as Portals completion events, will
be processed by polling when the user-level library is en-
tered. The existing implementation, or generic mode, will
continue to be necessary and will run side-by-side with the
accelerated implementation. Limited network interface re-
sources allow only a small number of accelerated-mode
clients per node. Additionally, Linux nodes will continue
to use generic-mode for the foreseeable future because ac-
celerated mode will not support non-contiguous message
buffers.

4. Portals Firmware

This section describes the operation of the C-based
SeaStar firmware that Sandia has developed. This firmware
provides the low-level support needed to implement the Por-
tals message passing API. It is based on the firmware orig-
inally provided for the system by Cray, Inc. The Cray ver-
sion was written in assembly. We have found that a C ver-
sion is much easier to modify and debug, but has no worse
performance than the assembly version. The Cray team and
our team are working together to combine the two code
bases and move forward with a single version.

The C firmware currently consists of 3,434 source lines
of C code and 253 source lines of assembly code, according
to Wheeler’s SLOCCount tool [8]. When compiled with
GCC 4.0 using optimization level three (-O3), the resulting
firmware image is 22 KB in size.

4.1. General Architecture

Figure 2 shows a high-level view of the host interface to
the C firmware. On the host, there are a number of pro-

cesses that use the Portals API to send and receive mes-
sages. In Section 3.1 we explained that these processes
are split into two groups, termed generic and accelerated.
Generic processes forward all of their Portals API calls to
the OS kernel, which multiplexes them to a single firmware
mailbox. Accelerated processes, on the other hand, send
some of their Portals API commands directly to a dedicated
firmware mailbox. Such commands are said to be offloaded
to the network interface. Some commands, such as those
related to process initialization, cannot be offloaded and are
always forwarded to the OS kernel.

The firmware processes commands that it receives in its
mailboxes. Each mailbox contains a command and result
FIFO. The host posts commands to the command FIFO by
incrementing the tail index in the network interface’s mail-
box structure. If the command returns a result, the host
busy-waits until the firmware posts the result to the result
FIFO. The use of FIFOs allows the host to post multiple
commands before waiting for a result in some cases. In par-
ticular, commands that do not return an immediate result
(e.g., transmit message1) can be efficiently streamed to the
firmware.

Each accelerated process and the generic Portals imple-
mentation in the kernel contain an Event Queue (EQ) for
the firmware to post asynchronous events into. Examples of
asynchronous events are “message transmit complete” and
“message reception complete”. Accelerated processes poll
the EQ, if necessary, when the user-level Portals library is
entered. The generic Portals implementation in the kernel is
interrupt driven and only checks the EQ when the firmware
has raised an interrupt. In order to reduce the number of
interrupts, the Portals interrupt handler processes all of the
new events in the generic EQ each time it is invoked. In-
dividual events are small enough that they can be posted
atomically by the firmware, allowing the host to simply read
the next EQ slot to determine if a new event has arrived.

Limited network interface resources and OS limitations
prevent all processes from operating in accelerated mode.
Typically, there will be a small number of accelerated pro-
cesses (one or two on each Catamount compute node) and
the remaining processes will operate in generic mode. Sup-
porting accelerated mode for Linux processes is particularly
difficult because of memory paging—accelerated mode re-
lies on message buffers being physically contiguous in
memory. Catamount places application memory in physi-
cally contiguous regions so it is straightforward to support
accelerated mode.

Currently, only generic mode has been fully imple-
mented in the C firmware. It was implemented first because

1Transmit commands can be thought of as returning a result much later
in the form of a “message transmit complete” event in the process’ event
queue, but this may be hundreds of microseconds after the command was
posted, so it is not efficient to busy wait for completion.

C
M

D
 F

IF
O

R
E
SU

LT
 F

IF
O

Head
Tail

Head
Tail

G
e

n
e

ric
 M

a
ilb

o
x

C
M

D
 F

IF
O

R
E
SU

LT
 F

IF
O

Head
Tail

Head
Tail

A
c

c
e

le
ra

te
d

M
a

ilb
o

x
1

OS Kernel

(Linux or Catamount)

Accelerated Process 1

Generic Portals

Event Queue
Event Queue

Generic Process 1 Generic Process N

C
M

D
 F

IF
O

R
E
SU

LT
 F

IF
O

Head
Tail

Head
Tail

A
c

c
e

le
ra

te
d

M
a

ilb
o

x
N

Accelerated Process N

Event Queue

PowerPC

440SeaStar

Figure 2. Firmware host interface

it was absolutely necessary for Linux nodes, where there
are often many Portals clients, and it would function cor-
rectly for Catamount nodes until accelerated mode could be
completed. Additionally, since generic mode Portals op-
erates in the OS kernel and is interrupt driven, it allowed
Cray to reuse an existing reference implementation of Por-
tals provided by Sandia. Accelerated mode requires that
the offloaded portions of Portals be reimplemented for the
SeaStar. Much of the infrastructure for accelerated mode is
already in place and we are actively working to complete it.

4.2. Data Structures

The firmware manages a number of data structures
needed to transmit and receive messages. Figure 3 depicts
an abstract view of the most important of these structures.
First, there is one network interface Control block that con-
tains global information concerning the entire firmware.
Next, the accelerated host process and the generic Portals
implementation in the OS kernel each have a dedicated
process structure and mailbox structure allocated to them.
These structures are one-to-one mapped and are split due to
caching requirements—the mailbox must be un-cached so
that coherency is maintained with the host while the data in
the process structure is accessed only by the firmware so it
can be stored in cached memory. Each process structure has
a pool of pendings, split into upper and lower portions, that
are used to track in-progress message transmissions and re-
ceptions. Finally, each node that the firmware is sending a
message to or receiving a message from has a source struc-
ture allocated to it. There is one pool of source structures

for the entire firmware (i.e., all processes on each node).
Each pending is split into lower and upper portions,

which are one-to-one mapped. The lower pending structure
is located in cached SeaStar local SRAM and contains all of
the information needed to progress and complete the mes-
sage it represents. The upper pending structure is located in
host memory and contains all of the information needed by
the host regarding the message. In normal operation, the
firmware never reads data from the upper pending struc-
ture because doing so requires a high latency round-trip
across the HyperTransport link. The firmware does write
information that is needed by the host into the upper pend-
ing. The upper pending structures are stored in cached host
memory and are automatically kept coherent with respect to
firmware writes by the Opteron’s memory controller.

Every firmware-level process has two pools of pend-
ing structures, one managed by the firmware and the other
managed by the host. The firmware managed pool is used
for message receptions. When a new message arrives, the
firmware allocates a pending from the target process’ RX
pending free list. The host managed pool is used
for message transmissions. To prepare to send a message,
a host process (i.e., an accelerated process or the generic
Portals implementation in the kernel) allocates a pending
structure from a free list that it maintains.

There is no dynamic allocation of any data structures by
the firmware. All structures are pre-allocated at initializa-
tion time and inserted into free lists or slab caches, from
which they may be rapidly allocated for use. While this
introduces compile time constraints on the number of out-
standing messages, in practice sizing these constants has not

Lower Pending

Upper Pending

Mailbox

Source

source node id

rx pending list

NIC Control Block

heartbeat for RAS

source free list

source hash

tx pending list

various counters

cmd fifo

result fifo

3
2

-b
yt

e
s

current state

buffer info

Source

source node id

rx pending list

Lower Pending

current state

buffer info

host process id

rx pending free list

upper pending table
Uncached

Upper Pending

portals header

other info

Upper PendingUpper Pending

portals header

other info

1-1 Mapped

{ {Structures in SeaStar Local SRAM Host Memory

Process

Figure 3. Firmware Data Structures

been too difficult. Resource exhaustion is addressed more
fully at the end of Section 4.3.

The two primary consumers of SeaStar local SRAM are
the source structures and the lower pending structures. The
memory occupied by these structures can be calculated by

M = (S ∗ Ssize) +
N∑

i=1

(Pi ∗ Psize)

where S is the number of sources, Ssize is the size of each
source structure, N is the number of firmware-level pro-
cesses, Pi is the number of pendings associated with pro-
cess i, Psize is the size of each pending structure, and M

is the SRAM occupied. For the current firmware, there
are 1,024 global source structures and 1,274 pending struc-
tures allocated to the generic process (N is currently 1).
These structures are small enough that several more sim-
ilarly sized pending pools can be supported for additional
firmware-level processes.

4.3. Firmware Processing

When idle, the firmware executes in a tight polling loop
waiting for events. When an event occurs, the correspond-
ing event handler is dispatched. The firmware is single
threaded so handlers execute until they return, at which
point a new event can be processed.

In order to transmit a message, the host must setup the
message header and then send a transmit command to the
firmware. First, the host allocates a pending structure from
the pool that it manages (i.e., the transmit pool). The host
then stores the Portals header in the upper portion of the
pending structure. Next, the host sends a transmit command
to the firmware, including the message’s pending ID, target

node ID, payload address in main memory, and the number
of bytes to transmit. If the message buffer is not physically
contiguous, the host must pre-compute the commands for
the TX DMA engine and pass them to the firmware. DMA
commands for physically contiguous messages are gener-
ated by the firmware.

When the firmware receives the transmit command, it
looks up the lower pending structure using the pending ID
that the host pushed down and initializes it. If there is no
source structure for the destination node, a new one is al-
located and initialized. The lower pending structure is then
enqueued at the tail of the TX pending list in the con-
trol block. All transmits, regardless of destination or pro-
cess type, are serialized through a single TX FIFO.

Once the pending reaches the head of the list, the
firmware programs the TX DMA engine to transmit the
message. The header is first DMA’ed out of the upper pend-
ing, followed by the payload DMA’ed directly from main
memory.2 If the message does not fit into the TX FIFO,
the transmit state machine will yield and return to the main
loop until there is more room in the FIFO. Finally, when
the message has been completely sent, the firmware un-
links the lower pending from the TX pending list and
posts a completion event to the host process’ event queue.
This completes the transmit from the firmware’s perspec-
tive. The host posts the Portals completion event to the ap-
plication and then returns the pending to its free list.

The RX DMA engine notifies the firmware when a
new message arrives from the network. In response, the
firmware inspects the message header to determine the
source node ID and the target host process ID. The source
node ID is used to retrieve the corresponding source struc-

2This is often referred to as zero-copy.

ture from a hash table of active sources. If no source struc-
ture is found, the firmware allocates a new one from its
free list and inserts it into the hash table. The host pro-
cess ID in the message header is used to look up the target
firmware-level process. Once identified, the firmware al-
locates a pending from the target process’ RX pending
free list.

At this point, the future actions of the firmware depend
on whether the target process is a generic process or an
accelerated process. For generic processes, the firmware
writes the entire Portals header into the upper pending, posts
an event to the generic Portals event queue on the host, and
then raises an interrupt. When the host receives the inter-
rupt, it reads the event from the event queue and uses it to
lookup the upper pending structure containing the Portals
header. The header is then used to perform Portals match-
ing on the host. Once the target memory descriptor has
been identified, the host sends a receive command to the
firmware, including the message’s pending ID, the payload
address in main memory, and the number of bytes to re-
ceive (and implicitly the number of bytes to discard). Like
the transmit case, message buffers that are not physically
contiguous have to have their receive DMA engine com-
mands pre-computed by the host. The firmware uses the
target buffer information in the receive command to setup
the lower pending structure.

For accelerated processes, Portals matching is performed
by the firmware. Therefore, there is no need for the
firmware to raise an interrupt to ask the host where to put
an incoming message. Once the target memory descriptor
has been matched, the lower pending structure can be setup
immediately. Like the generic case, the firmware writes the
entire Portals header into the upper pending structure. This
information is needed by the user-level Portals library when
the firmware posts the message reception complete event.

Once the lower pending structure has been setup, the
firmware links it to the tail of the target source structure’s
RX pending list. When the pending reaches the head
of this list, the firmware programs the receive DMA en-
gine to deposit the message directly into the target buffer
in host memory. Once complete, the firmware posts a com-
pletion event to the host process’ event queue. The host then
uses the information stored in the upper pending to post the
Portals completion event. Finally, the host sends a release
pending command to the firmware to indicate that it is done
with the upper pending structure and that the firmware can
return the pending to the appropriate free list. This com-
pletes the receive from the firmware’s perspective.

Unlike message transmission, there can be multiple re-
ceives in progress simultaneously—one from each source
node. The packets of multiple incoming message streams
arrive interleaved from the network. Normally, the RX
DMA engine can transparently handle de-multiplexing the

interleaved packets to the correct target buffers, based on
the commands programmed by the firmware. In exceptional
cases, there may be too many incoming messages for the
RX DMA engine to handle. This is treated as a resource
exhaustion case, described below.

There are a number of network interface-level resources
that can be exhausted. For example, there may not be an un-
used pending structure available to handle a new message.
Similarly, there may be too many sources trying to send
to a node simultaneously. When this occurs, the firmware
should become involved to resolve the situation.

The C firmware currently assumes that resource exhaus-
tion does not occur. This has been sufficient to run several
of Sandia’s applications on approximately 7,700 nodes of
Red Storm, which at the time of this writing is the max-
imum sized system partition that we have had access to.
We have carefully monitored firmware resource usage and
have never observed anything approaching dangerous lev-
els. However, we expect that production-level use will oc-
casionally trigger resource exhaustion. We are currently
working on a simple go-back-n protocol to resolve resource
exhaustion gracefully. The current approach is to panic the
node, which results in application failure.

5. Test Environment

5.1. Platform

The platform used for our experiments is the 10,368-
processor Red Storm machine at Sandia. This machine is a
slightly specialized version of the commercial XT3 product.
It differs from the XT3 in that the network is not a torous
in all three directions. In order to support easily switching
portions of the machine between classified and unclassified
use, special switching cabinets were created for Red Storm.
This capability and the limitation of cable lengths only al-
low the network to be torous in the z-direction. Each node
in Red Storm has a 2.0 GHz AMD Opteron with 4 GB of
main memory.

We present performance results using two different im-
plementations of MPI for the XT3. The first is a port of
MPICH 1.2.6 for Portals 3.3 developed by Sandia. The
second is the Cray supported version of MPICH2 [9]. A
detailed description of these implementation can be found
in [3].

5.2. Benchmarks

In order to measure and compare the performance of Por-
tals and MPI, we use the NetPIPE [14] benchmark. We de-
veloped a Portals-level module for NetPIPE version 3.6.2.
This module creates a memory descriptor for receiving mes-
sages on a Portal with a single match entry attached. The

memory descriptor is created once for each round of mes-
sages that are exchanged, so the setup overhead for creating
and attaching a memory descriptor to a Portal table entry is
not included in the measurement. Rather than choosing a
fixed message size interval and fixed number of iterations
for each test, NetPIPE varies the message size interval and
number of iterations of each test to cover a disparate set of
features, such as buffer alignment. NetPIPE also provides
a performance test for streaming messages as well as the
traditional ping-pong message pattern. The Portals module
that was developed for NetPIPE allows for testing put op-
erations and get operations for both uni-directional and bi-
directional tests and for uni-directional streaming tests for
gets and puts. In the next Section, we compare the results
from the Portals module with the existing MPI module in
NetPIPE.

6. Results

Figure 4 shows latency performance for Portals put and
get and the two implementations of MPI. One-byte latency
is 5.39 µs, 6.60 µs, 7.97 µs, and 8.40 µs respectively. A
significant amount of the current latency is due to inter-
rupt processing by the host processor. At 12 bytes we see
the results of a small message optimization currently in the
firmware. Because 12 bytes of user data will fit in the 64
byte header packet, these 12 bytes can be copied to the host
along with the header. This allows the new message and
message completion notification to be delivered simultane-
ously and saves an interrupt. For longer messages, the com-
bination of the independent progress semantics of Portals
with the processing of the message headers on the host re-
quires that two interrupts be used — one to have the header
processed and one to post a completion notification to the
application. In the fully offloaded implementation, both in-
terrupts will be eliminated as the network interface will pro-
cess headers and will write completion notifications directly
into process space.

Figure 5 shows uni-directional bandwidth performance.
The bandwidth for put tops out at 1108.76 MB/s for an 8
MB message. The bandwidth curves are fairly steep, with
half the bandwidth for a unidirectional put being achieved
at a message of around 7 KB. The MPI bandwidth is only
slightly less, with both MPI implementations achieving the
same performance.

Figure 6 shows the streaming bandwidth performance.
As expected, the graph is steeper for this curve than the
ping-pong bandwidth results. Half bandwidth for this
benchmark is achieved at around a message size of 5 KB.
Again, the MPI implementations have similar performance.
We can also see that the streaming test has a much greater
impact on the performance of the get operation, which is
a blocking operation (for this benchmark) that cannot be

 0

 2

 4

 6

 8

 10

 12

 14

 1 10 100 1000
La

te
nc

y
(m

ic
ro

se
co

nd
s)

Message Size (bytes)

get
mpich2

mpich-1.2.6
put

Figure 4. Latency performance

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

get
mpich2

mpich-1.2.6
put

Figure 5. Uni-directional bandwidth perfor-
mance

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

get
mpich2

mpich-1.2.6
put

Figure 6. Streaming bandwidth performance

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
B

/s
)

Message Size (bytes)

get
mpich2

mpich-1.2.6
put

Figure 7. Bi-directional bandwidth perfor-
mance

pipelined.
Figure 7 shows bi-directional bandwidth performance.

The performance of the put tops out at 2203.19 MB/s for an
8 MB message, while both MPI implementations achieve
only slightly less. This test shows that the SeaStar is able
to sustain its unidirectional bandwidth performance when
sending as well as receiving. For all of the bandwidth tests,
we expect a dramatic decrease in the point at which half
bandwidth is achieved as processing is offloaded from the
host and the costly interrupt latency is eliminated.

7. Summary

This paper has described the implementation and perfor-
mance of Portals 3.3 for the Cray SeaStar, the custom inter-
connect developed by Cray for their XT3 platform. The
current implementation of Portals for the SeaStar does a
limited amount of processing on the network interface and

relies on the host to perform many of the message process-
ing duties. This initial implementation has demonstrated re-
spectable performance, with a zero-length NetPIPE latency
of 5.39 µs and a peak bandwidth of over 1.1 GB/s. The soft-
ware stack for both the generic mode (using the host CPU)
and the accelerated mode (using the network interface CPU)
are currently under active development. We expect both la-
tency and bandwidth performance to increase for each mode
over the next several months.

8. Acknowledgments

The authors gratefully acknowledge the work of the
members of the Scalable Computing Systems and Scalable
Systems Integration departments at Sandia, especially Jim
Laros and Sue Kelly.

References

[1] R. Alverson. Red Storm. In Invited Talk, Hot Chips 15,
August 2003.

[2] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. K. Su. Myrinet
— A gigabit-per-second local-area-network. IEEE Micro,
15(1):29–36, Feb. 1995.

[3] R. Brightwell. A comparison of three MPI implementa-
tions for Red Storm. In Proceedings of the 12th European
PVM/MPI Users’ Group Meeting, September 2005.

[4] R. Brightwell, L. A. Fisk, D. S. Greenberg, T. B. Hudson,
M. J. Levenhagen, A. B. Maccabe, and R. E. Riesen. Mas-
sively Parallel Computing Using Commodity Components.
Parallel Computing, 26(2-3):243–266, February 2000.

[5] R. Brightwell, T. B. Hudson, A. B. Maccabe, and R. E.
Riesen. The Portals 3.0 message passing interface. Tech-
nical Report SAND99-2959, Sandia National Laboratories,
December 1999.

[6] R. Brightwell, W. Lawry, A. B. Maccabe, and R. Riesen.
Portals 3.0: Protocol building blocks for low overhead com-
munication. In Proceedings of the 2002 Workshop on Com-
munication Architecture for Clusters, April 2002.

[7] Lustre: A scalable, high-performance file system. Cluster
File Systems Inc. white paper, version 1.0, November 2002.

[8] David A. Wheeler. SLOCCount. Available from http:
//www.dwheeler.com/sloccount.

[9] W. Gropp. MPICH2: A new start for MPI implementations.
In D. Kranzlmuller, P. Kacsuk, J. Dongarra, and J. Volkert,
editors, Recent Advances in Parallel Virtual Machine and
Message Passing Interface: 9th European PVM/MPI Users’
Group Meeting, Linz, Austria, volume 2474 of Lecture Notes
in Computer Science. Springer-Verlag, September/October
2002.

[10] S. M. Kelly and R. Brightwell. Software architecture of the
light weight kernel, Catamount. In Cray User Group, Albu-
querque, NM, May 2005.

[11] A. B. Maccabe, K. S. McCurley, R. Riesen, and S. R. Wheat.
SUNMOS for the Intel Paragon: A Brief User’s Guide. In
Proceedings of the Intel Supercomputer Users’ Group. 1994
Annual North America Users’ Conference, pages 245–251,
June 1994.

[12] K. T. Pedretti and T. Hudson. Developing custom firmware
for the Red Storm SeaStar network interface. In Cray User
Group Annual Technical Conference, May 2005.

[13] L. Shuler, C. Jong, R. Riesen, D. van Dresser, A. B. Mac-
cabe, L. A. Fisk, and T. M. Stallcup. The Puma operating
system for massively parallel computers. In Proceeding of
the 1995 Intel Supercomputer User’s Group Conference. In-
tel Supercomputer User’s Group, 1995.

[14] Q. O. Snell, A. Mikler, and J. L. Gustafson. NetPIPE: A net-
work protocol independent performance evaluator. In Pro-
ceedings of the IASTED International Conference on Intel-
ligent Information Management and Systems, June 1996.

